点電荷が作る電界の強さと点電荷に働く力

点電荷が作る電界の強さは、電荷の大きさに比例し、距離の2乗に反比例します。

点電荷から r [m] の位置の電界の強さは等電位面になります。

等電位面は r [m] の球体の位置の電界の強さになります。

点電荷が作る電界の強さ

点電荷 \(Q\) [C] から \(r\) [m] 離れた位置を 点 \(P\) とします。

点電荷 \(Q\) [C] が 点 \(P\) に作る 電界の強さ \(E\) [V/m] は 次の式で表されます。

\(E=k\cfrac{Q}{r^2}=\cfrac{Q}{4πε_0r^2}\) [V/m]  

\(E=9×10^9×\cfrac{Q}{r^2}\) [V/m]

★ 電界の強さは誘電率 \(ε\) の媒質中では次の公式になります。

\(E=k\cfrac{Q}{ε_rr^2}=\cfrac{Q}{4πε_0ε_rr^2}\) [V/m]

■ 定数 \(k\) と 誘電率
誘電率は電荷の貯めやすさの比率を表します。
\(k=\cfrac{1}{4\piε_0}=9×10^9\) [N・m2/C2]\(\cdots\)定数 

\(ε_0=8.854×10^{-12}\) [F/m]\(\cdots\)真空の誘電率

\(ε=ε_0ε_r\) [F/m]\(\cdots\)誘電率で「イプシロン」と読みます。 

\(ε_r=\cfrac{ε}{ε_0}\)\(\cdots\)比誘電率 空気中では \(ε_r=1\) です。

\(k=\cfrac{1}{4\piε}\cdots\)誘電率εの媒質中の定数

★ 電界の強さは 点電荷から半径 \(r\) [m] の球体を考えると、球体から半径 \(r\) [m] の 任意の点 の電界の強さ \(E\) はどこでも同じになります。

★ 電界の強さの単位は、一般的に [V/m] が使用されますが、次のように単位を変換することが出来るますので [V/m] と {N/C] は等しくなります。

■ 単位の変換
\(\rm N=\cfrac{J}{m}\)
\(\rm V=\cfrac{J}{C}\)
\(\rm \cfrac{V}{m}=\cfrac{J}{C・m}=\cfrac{N}{C}\)

2つの点電荷間に働く力

★ 点電荷間に働く力は クーロンの法則 により求められます。

\(F=k\cdot\cfrac{Q_1Q_2}{r^2}\) [N] 
\(F=9×10^9×\cdot\cfrac{Q_1Q_2}{r^2}\) [N]

★ クーロンの法則は誘電率 \(ε\) の媒質中では次の公式になります。

\(F=k\cdot\cfrac{Q_1Q_2}{ε_rr^2}\) [N]

■ 定数 \(k\) と 誘電率
誘電率は電荷の貯めやすさの比率を表します。
\(k=\cfrac{1}{4\piε_0}=9×10^9\) [N・m2/C2]\(\cdots\)定数 

\(ε_0=8.854×10^{-12}\) [F/m]\(\cdots\)真空の誘電率

\(ε=ε_0ε_r\) [F/m]\(\cdots\)誘電率で「イプシロン」と読みます。 

\(ε_r=\cfrac{ε}{ε_0}\)\(\cdots\)比誘電率 空気中では \(ε_r=1\) です。

\(k=\cfrac{1}{4\piε}\cdots\)誘電率εの媒質中の定数

■ 電荷間に働く力の方向
異種の電荷間には 吸引力 が働き

同種の電荷間には 斥力 が働きます。

■ 平等電界中の電荷が受ける力
平等電界中 \(E\) [V/m] にある電荷 \(q\) [C] が受けるクーロン力(静電気力)\(F\) [N] は、次のようになります。

\(F=qE\) [N] 

以上で「点電荷が作る電界の強さと点電荷に働く力」の説明を終わります。